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Abstract 

 In this study we analyzed kinetics of phase concentrations in the electrically loaded 

systems in the region where both phases are metastable simultaneously. We determined the 

dependence of the equilibrium concentration of phases upon the amplitude of the external 

electric field, and demonstrated a feasibility to control the equilibrium concentration of the 

phases by changing the amplitude of the external electric field .   
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1. Introduction 

 

 In our previous studies [1-4] we investigated peculiarities of phase transitions in current 

caring conductor when these transitions are accompanied  by  a sharp change of electric 

conductivity. It was shown that ponderomotive forces prevent from formation of the nuclei 

with the electric conductivity lower than that of the surrounding medium, and promote 

nucleation when the electric conductivity of a nucleus is higher than that of a surrounding 

medium. This mechanism results in a number of different effects and, in particular, the 

existence of the domain where both phases are metastable. Clearly, the kinetics of the 

concentrations of phases in this domain must be different than that in the common situation 

where one phase is stable and other is metastable. In this study we investigated the kinetics of 

the concentration of phases in the domain of their metastability. 

  In addition to the case of the current-carrying conductors we investigate also the  effect 

of the electrostatic field on the kinetics of the phase transitions occurring in dielectrics.  

 Using the results that was derived in our previous  studies [1-4] we can write the 

condition of the phase equilibrium between two phases in the electrically loaded system. 

Hereafter the parameters of the external phase (the host medium) are denoted by a subscript 

"0" and the parameters of the internal phase (nucleus) are denoted by subscript "1". The 

condition of the equilibrium between phases reads: 

   

  µ1 p, T( ) + v1 ˜ p + pS( )= µ0 p,T( )                                                      (1)  

  

where µ1, µ0  are chemical potentials of the internal and external phase, correspondingly, v1 

is specific volume of the internal phase, p is external pressure, T is temperature of the system 

and ˜ p  is the ponderomotive pressure. In the case of a spherical nucleus the surface tension 

pressure  

 
  ps = 2α

r1
. 
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In the case of the phase transition in a current-carrying conductor  
   

  ˜ p = ˜ p m = 2ξmpmΦ(r1),                                                               (2)  

 

where ξm =
1 − κσ
2 + κσ

, pm =
I2

πρ0
2c2 , I is a total electric current passing through the 

conductor, ρ0 is a radius of the cylindrical conductor , c is a speed of light, κ σ =
σ1
σ0

,  σ1 and 

σ0  are electric conductivities of the nuclear and of the host medium, respectively, Φ r1( ) is a 

geometric factor that depends upon the distance between the surface of the conductor and the 

center mass of the nuclear .   

 In the case when phase transition occurs in the dielectric in the presence of the external 

electric field 

 

  ˜ p = ˜ p E =
3ε0E2ξε

8π
, ξε =

1−κε
κε +2 , κε = ε1

ε0
, (3) 

 

where E0  is the strength of the electric field, ε0, ε1 are dielectric permitivities of the external 

(host) and of the internal (nucleus) phases, respectively. 

 Further analysis is performed using Eq. (1) in order to determine the size of the critical 

nucleus r−  for a phase transition + → −  and r+  for a phase transition − → + . Hereafter 

subscripts +  and −  denote a high temperature and a low temperature phases, respectively. 

Using Eq. (1) in the vicinity of the temperature T = T0 p( ) for a given pressure p we find that 

for a phase transition + → −  (phase −  is considered to be internal): 

 

  r− T( )= −
2αv−

0

λ 0
∆T
T0

+ v−
0 ˜ p −

, ∆T = T − T0                                      (4) 

 

where v−
0  is a specific volume of a low temperature phase at the phase equilibrium curve 

T = T0 p( ), the latent heat of a phase transition λ 0 = T0 s+
0 − s−

0( )> 0 , s+
0  and s−

0 , are specific 

entropies of high temperature and low temperature phases, respectively, ˜ p − is determined by 

the formulas (2) or (3) and subscript "1"  denotes the low temperature phase and subscript "0" 
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denotes the high temperature phase. Similarly we can consider a phase transition − → + , and 

assuming that internal phase is a high temperature phase we arrive at the following formula 

for the radius of the critical nucleus: 

 

   r+ (T) =
2αv+

0

λ 0
∆T
T0

− v+
0 ˜ p +

,                                                                       (5) 

 

where v+
0  is a specific volume of the high temperature phase. 

 Eq. (4) allows us to determine a temperature T−  such that at temperatures T > T−  the 

nuclei of the low temperature phase ( −  ) are not formed: 

 

  
T− − T0

T0
= −

v− ˜ p −
λ 0

, (6) 

 

while Eq. (5) allows us to determine a temperature T+  such that at temperatures T < T+  the 

nuclei of the high temperature phase +  are not formed: 

 

  
T+ − T0

T0
=

v+ ˜ p +
λ0

. (7) 

 

 Let us introduce a parameter 

 

  γ =
T− − T0
T+ − T0

.  

 

In the case of the phase transition in the current caring conductor this parameter is determined 

by the following equation: 

 

  γ = γσ =
v−
v+

(1+ 2κ σ )
(κ σ + 2) , κ σ =

σ−
σ+

 (8) 

 

In the case of the phase transition of the first kind in the dielectric in the external electric field 

this parameter is given by the following expression: 
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  γ = γε =
1+ 2κ ε

κ ε + 2( )κ ε

v−
v+

> 0, κ ε =
ε−
ε+

. (9) 

 

Eqs. (8), (9) imply that the curves T− p( )  and T+ p( )  are shifted in the same direction with 

respect to the curve T0 p( ) since the differences T− − T0 and T+ − T0 have the same sign. As 

follows from Eqs. (4)-(7) when κ >1* the curves T− p( )  and T+ p( )  are shifted towards higher 

temperatures, and when κ <1 these curves are shifted towards lower temperatures. 

   If T− p( ) < T+ p( ) , then in the temperature range 

 

  T− p( ) < T < T+ p( )  (10) 

 

the nuclei of the new phase are not formed. The latter conclusion is a direct consequence of 

the definition of T− p( )  and T+ p( ) . In the temperatures range (10) both phases are stable, i.e., 

it is a range of a hysteresis. Occurrence of a particular phase in this domain depends upon the 

direction of the process. Thus, heating retains a low temperature phase while cooling retains a 

high temperature phase. When κ >1, the temperatures range (10) is determined by a condition 

γ < 1 while for  κ <1 the range of hysteresis is determined by a condition γ > 1.  

 A different situation occurs when T+ p( ) < T− p( ) . In the latter case in the temperature 

range  

  T+ p( ) < T < T− p( )  (11) 

 

both phases are metastable, so that the radii of the critical nuclei for the direct and inverse 

phase transitions, r+ T( ) and r− T( ), assume finite positive values. The latter can be verified as 

follows. Eliminating ∆T T0 in formulas (4), (5) we find that 

 

  
2αv+

r+
+

2αv−

r−
= −v− ˜ p −

γ −1
γ

= v+ ˜ p + γ −1( ).  (12) 

 

 In the domain where both phases are metastable, r+ T( ) and r− T( ) assume positive and 

finite values. Eq. (12) implies that such situation can occur only when its right-hand side is 

                                                 
* Hereafter we will use a notation κ  when exposition is the same for  κ ε  and κ σ . 
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positive. Since for κ >1, ˜ p − > 0 and ˜ p + < 0, Eq. (12) implies that a condition for 

metastability of both phases in the range κ >1 is γ > 1. Similarly it can be showed that in the 

range κ <1 the condition for metastability of both phases is γ < 1. In this case a condition 

(11) again corresponds to the condition metastability of both phases.  

 In Figs. 1-2 we showed locations of the different domains of stability of phases for κ >1 

and κ <1 on the temperature axis. In Fig. 3 we showed locations of the domains of 

metastability of both phases on v− v+ ,ε− ε+  plane in the case of the phase transition in the 

dielectric in the presence of external electric field. In Fig. 4 we showed locations of the 

domains of metastability of both phases on v− v+ ,σ− σ+  plane in the case of the phase 

transition in a current-caring conductor. 

 Above we considered different thermodynamic regions at the temperature axis for a given 

magnitude of pressure. Similarly we can use Eq.(1)  to analyze different thermodynamic 

regions at the pressure axis for a given magnitude of temperature. Expanding Eq. (1) in the 

vicinity of the curve p = p0 T( ) and using considerations similar to those employed in the 

analysis of the temperatures range we arrive at the thermodynamic domains of stability of 

phases shown in Figs. 1, 2, where the parameters p− , p+  are defined similarly to the 

parameters T−, T+ ,  i.e.  for p > p−  a low pressure phase is not formed , and for p < p+  a high 

pressure phase is not formed. 

 In conclusion let us consider kinetics of formation of two phases. Let x+  and x−  are 

concentrations of a high temperature and a low temperature phases, respectively. We neglect 

fluctuations of concentrations and consider a linear domain where concentrations of both 

phases are far from the depletion. Let p+  and p−  be probabilities of formation of phases (see 

[5], Chapter 12 , Section 99). Since x+ + x− =1 using the local approximation we find that 

 

  Ý x + = p+ 1 − x+( )− p−x+ ,  

or 

 

  

x+ t( ) =
ϕ

1 + ϕ
+ exp −γt( ) x+ 0( ) −

ϕ
1+ ϕ

 

 
  

 

 
  , ϕ =

p+
p−

,

x− t( ) = 1
1 + ϕ

+ exp −γt( ) x− 0( ) − 1
1+ ϕ

 

 
  

 

 
  .
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In the linear region where both phases are far from depletion the probability of phase 

formation is determined by the radii of the critical nuclei (see [5], Chapter 12, Section 99), 
p± ∝ exp −4παr±

2 3kT( ), and 

 

  ϕ = exp −
4πα r+

2 − r−
2( )

3kT

 

 

 
 
 

 

 

 
 
 

. (13) 

 

Here r+  and r−  are sizes of the critical nuclei of the phases in the domain of coexistence of 

phases which were determined above. Substituting these values into formula (13) yields the 

dependencies of phase concentrations x+  and x−  upon the amplitude of the external electric 

field.  

 In the following we consider phase transitions in a dielectric medium separately from 

phase transitions in a current-carrying conductor. Direct substitution of Eqs. (4)-(5) into Eq. 

(13) yields expression which is too cumbersome for the direct analysis. In order to derive 

simple formulas for the dependencies of concentrations of phases on the amplitude of the 

external electric field let us define the electric field 

 

  Ee
2 =

∆T
T0

λ0
˜ V κ( )

, (14) 

 

where ˜ V κ( ) =
v−v+

v+ + v−

κ −1
8π

β+
3 κ2 + 4κ +1( )
κ + 2( ) 1 + 2κ( )

, κ = κ ε . 

 When the external electric field E0 = Ee , then at a given ∆T , r+ T( )= r− T( ) , i.e., ϕ =1. 

Thus, formula (14) determines the magnitude of the external electric field Ee  that renders 

concentrations of both phases equal. Now let us determine the dependence of the ratio of 

concentrations of phases ϕ = x+ ∞( ) x− ∞( ) in the vicinity of ϕ =1 upon the magnitude of the 

external electric field. Formulas for the sizes of the nuclei can be rewritten as follows: 

 
  r− T( )=

r∗

1 −
x2 −1( )A
1 − A

, r+ T( ) =
r∗

1+
x2 −1( )A
A − sτ

, (15) 
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where r∗  is a radius of the critical nucleus for ϕ =1 

 

      r∗ =
r1
0

1− A
=

r1
0τ

A − τs
 ,                                                                   (16) 

  

r1
0  is a radius of the critical nucleus without external electric field for a given temperature 

difference ∆T  : 
  

 

  

r1
0 =

2αv1

λ0
∆T
T0

  

 

and  

 

  s = v− v+ , τ =
1+ 2κ

κ κ + 2( )
, A =

τ 1+ s( )
1 + τ

.  (17) 

 

The magnitudes of parameters A, s  and τ  are determined by the characteristics of phases. 

Thus, Eqs. (15), (16) determine the range of the external electric field E0  where both phases 

are metastable. This range of the external electric field can be found from the conditions that 

sizes of the critical nuclei of both phases are positive, i.e., r− T( )> 0 and r+ T( )> 0. The latter 

conditions yield  
 

  
∆T
T0

λ0
˜ V κ( )

s 1 + τ( )
1+ s

< E0
2 <

∆T
T0

λ0
˜ V κ( )

1 + τ
τ 1+ s( )

. (18) 

 

 

 Note that a condition r∗ > 0  or τs < A < 1, is a particular case of the Eq. (18) at E0 = Ee . 

Using Eqs (13) ,(15)  we arrive at the following formula for the ratio of concentrations of two 

phases: 

 

  
  

ln ϕ( ) =
4παr0

2

3kT

2ξτ + ξ2 1− τ( )[ ]1+ τ( )

1− ξ( )2 τ + ξ( )2 1− A( )2 , (19) 
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where ξ =
E0

2 − Ee
2

Ee
2

A
1 − A

.  

 Eq. (19) determine the dependence of the ratio of concentrations of both phases on the 

magnitude of the applied electric field and parameters of the problem. 

 Similarly we can investigate the case of the phase transitions in a current-carrying 

conductor. In the following we present only final results. Similarly to the amplitude of the 

external electric field given by Eq. (14) let us introduce the magnitude of the electric current 

Ie :  

            

 
Ie
2

πρ0
2c2 =

∆T
T0

λ0
˜ V i κ( )

, ˜ V i = 6v− v+(κ 2−1)
(v+ + v− )(1 + 2κ)(κ + 2) , κ = κ σ =

σ−
σ+

.                  (20)                           

 

 When the magnitude of the electric current passing through the conductor I = Ie , then for 

a given temperature difference ∆T , r+ T( )= r− T( ) , i.e., ϕ =1. Thus formula (20) determines 

the magnitude of the electric current that renders concentrations of the both phases equal. 

Using this equation, and formulas (2),(4),(5) we can derive equations similar to Eqs. (15)-(17) 

with the only difference that a parameter τ  is defined as follows: 

 

  τ = τi =
1 + 2κ σ
κ σ + 2

 

 

The range of the magnitudes of the electric current where both phases metastable is 

determined by the following equation: 

 

  
∆T
T0

λ 0
˜ V i κ( )

s 1 + τi( )
1+ s

< pe <
∆T
T0

λ0
˜ V i κ( )

1 + τi
τi 1 + s( )

, pe =
Ie
2

πρ0
2c2 , 

 

and the ratio of the concentrations of phases is determined by Eq. (19) where 

 

  ξ = ξi =
I2 − Ie

2

Ie
2

Ai
1 − Ai

 

 

and Ai  is determined by Eq. (17) with τ = τi . 



  10 

 

4. Discussion  

 

 The main result that was obtained in this study is that we demonstrated the feasibility to 

control concentrations of phases in the system by varying the amplitude of the electric 

current or the external electrostatic field. The feasibility to control concentrations of phases 

arises in the systems that are subjected to the external electromagnetic field due to the 

existence of the domain where both phases are metastable. The main impediment to the 

observation of the effects considered in this investigation is that even for the large electric 

currents or electric fields the magnitude of the shift of the temperature of the phase transition 

due to the influence of the electric field, 0TT∆ , is small with respect to the range of 

variation of thermodynamic parameters during phase transition (see Refs. [3], [6]). 

Therefore the temperature range where the considered effects can be realized, 

1~~ 000 <<∆ λvpTT , is very narrow. However this range can be quite large when the latent 

heat of phase transition is small. The existence of the domain where two phases are 

metastable can be realized also when other types of external loading are applied. It is 

reqiured only that the thermodynamic pressure in the system is renormalized, and the 

magnitude of the renormalized pressure must depend on which phase is the external phase 

and which phase is the internal phase. 
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Figures captions 

 

Fig. 1. Location of domains af stability and metastability of pases for different values of 

parameter γ (κ >1). 

 

Fig. 2. Location of domains af stability and metastability of pases for different values of 

parameter γ (κ <1). 

 

Fig. 3. Domains of metastability of both phases on v− v+ ,ε− ε+  plane. 

 

Fig. 4. Domains of metastability of both phases on v− v+ ,σ− σ+  plane. 
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Figure 1, Yu. Dolinsky&T. Elperin, Dependence of concentrations of phases on the amplitude of the external 
field in the domain of metastability of both phases.  
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Figure 2, Yu. Dolinsky&T. Elperin, Dependence of concentrations of phases on the amplitude of the external 
field in the domain of metastability of both phases.  
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Figure 3, Yu. Dolinsky&T. Elperin, Dependence of concentrations of phases on the amplitude of the external 
field in the domain of metastability of both phases.  
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Figure 4, Yu. Dolinsky&T. Elperin, Dependence of concentrations of phases on the amplitude of the external 
field in the domain of metastability of both phases.  


